Ischemia induced neural stem cell proliferation and differentiation in neonatal rat involved vascular endothelial growth factor and transforming growth factor-beta pathways.

نویسندگان

  • Jinqiao Sun
  • Wenhao Zhou
  • Bin Sha
  • Yi Yang
چکیده

Brain ischemia is a leading cause of mortality and morbidity in premature infants. Knowing the fate of neural stem cells in the subventricular zone (SVZ) after ischemia and the mechanisms that determine this fate would be useful in manipulating neural stem cell proliferation and differentiation and possibly in reversing ischemic damage. We sought to identify the genes involved in the proliferation and differentiation of neural stem cells after exposure to ischemia in a 3-day-old rat model that approximates ischemia in premature infants. Proliferating cells were labeled by bromodeoxyuridine (BrdU) through intraperitoneal injection. Using immunfluorescence assays, we observed the proliferation and differentiation of neural stem cells. Genes were identified with GeneChip and real-time quantitative polymerase chain reaction analysis. Ischemic rats had more BrdU-positive cells in the SVZ at all four time points and more neural stem cells differentiation into neurons, astrocytes, and oligodendrocytes. GeneChip analysis showed a 3- to 10-fold increase in the mRNA expression of vascular endothelial growth factor, transforming growth factor-beta, and their receptors in the SVZ. PCR assays and Western blot analyses confirmed these results, indicating that vascular endothelial growth factor and transforming growth factor-beta might be two of the factors that involve post-ischemic neural stem cell proliferation and differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Transforming Growth Factor Beta 1 and Curcumin on Proliferation and Differentiation of Nasal-Derived Chondrocyte Seeded on the Fibrin Glue Scaffold

Introduction: Natural biomaterials and growth factors are key factors in tissue engineering. The objective of the present study was to evaluate transforming growth factor beta 1 (TGF-β1) and curcumin on proliferation and differentiation of nasal-derived chondrocyte seeded on the fibrin glue scaffold. Methods: Chondrocytes were isolated from nasal samples. Nasal-derived chon...

متن کامل

Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A

Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...

متن کامل

Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line.

During vascular development, nascent endothelial networks are invested with a layer of supporting cells called pericytes in capillaries or smooth muscle in larger vessels. The cellular lineage of smooth muscle precursors and factors responsible for regulating their differentiation remain uncertain. In vivo, cells derived from the multipotent neural crest can give rise to vascular smooth muscle ...

متن کامل

Involvement of TRPM7 calcium channels and PI3K/AKT kinase pathway in protective effect of vascular endothelial growth factor in amyloid beta-induced model of Alzheimer’s disease

Background and Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, in which cortical and hippocampus neurons death is the main target of neurodegeneration. In addition to extracellular beta amyloid accumulation and the production of neural tangles, one of effective factors in the pathology of Alzheimer's disease is vascular injury in the elderly including disturbanc...

متن کامل

Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat

Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes.  Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain & development

دوره 32 3  شماره 

صفحات  -

تاریخ انتشار 2010